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The motion of a chymotrypsin-like serine protease,SGPA, has been studied by
torsion space normal mode analysis and by Cartesian space molecular dynamics, and
the results have been compared. The molecular dynamics trajectory was analyzed
using digital signal processing techniques to provide a set of characteristic modes that
can be compared directly with the normal modes. The results were also compared
with the motion implied by the crystallographic temperature factors. We find that in
spite of the radically different approximations used in the two methods, agreement
between the resulting motions and with the experimental data is surprisingly high. We
conclude that this agreement probably reflects an underlying robustness in the motion,
dictated primarily by van der Waals packing. In contrast to other proteins, there are
no large amplitude inter-domain motions. Rather, the low frequency, high amplitude
motions are concentrated in three surface hairpin loops. The movement of one these
loops, the specificity loop, appears to facilitate substrate binding.c© 1999 Academic Press
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INTRODUCTION

Conformational flexibility is essential to many biological events. A variety of experi-
mental methods give access to partial information on protein motion: X-ray crystallography
provides accurate mean atomic positions, but only approximate values for the isotropic am-
plitudes of motion about those positions [1]. Limited information about protein flexibility
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and movement is also available from diffuse x-ray scattering [2]. Some insight into the
time scale of protein motion has been obtained from Raman spectroscopy [3], fluorescence
studies [4, 5], inelastic neutron scattering [6], and in particular, from NMR experiments [7].
However, these experimental techniques provide very few data on the spatial displacements
involved. Computational methods offer a means of exploring the details of the possible
motions. The two main approaches to investigating molecular motion are normal mode
dynamics and molecular dynamics simulations.

Normal mode dynamics (NM) has long been used as a tool in interpreting vibrational
spectra of small molecules [8, 9] and homobiopolymers [10]. In recent years it has been
extended to the study of large systems such as proteins [11, 13]. The motion is modeled as
a superposition of a set of independent harmonic oscillations about the equilibrium atomic
positions. For protein work, the required forces are represented by the same type of ap-
proximate empirical potential as that used in molecular dynamics. The method provides an
informative visual model which characterizes the available types of motion in terms of
frequency and of atomic amplitudes and directions of motion. Of particular interest is the
ability to study slow collective motions of large biological molecules. It also allows for
the efficient calculation of time-averaged properties associated with positional fluctuations.
However, it is not cleara priori that the underlying assumptions are justified for large
molecules. First, the motion is assumed to involve small oscillations about one minimum
energy conformation and to be harmonic (quadratic) in nature. Thus, its application in sys-
tems such as proteins, with many local minima and large fluctuations, may not be valid.
Second, it has not been possible to apply this approach to systems with inherently disordered
components, so that solvent effects cannot be taken into account.

The other major technique, molecular dynamics (MD) [14, 15], involves solving Newton’s
equations of motion to yield a trajectory of atomic positions. In principle, these represent a
realistic description of molecular motion, including small and large structural fluctuations
and conformational transitions. Moreover, this technique can take solvent effects into ac-
count explicitly. Limitations are imposed by the approximate nature of the force fields and
by the relatively short time scale (of the order of a nanosecond) computationally accessible.
Although the laws of motion are very simple, the resultant trajectories are very complicated
and interpreting the complex motion is not trivial. In particular, it is difficult to investigate
long range collective motions. This problem has been addressed recently in a number of
studies, using different approaches. One method for identifying collective motions in pro-
teins from MD simulations makes use of the equal-time covariances and cross-correlations
of atomic fluctuations, and has revealed that regions of secondary structure move in a corre-
lated manner [16]. Diagonalization of the equal-time correlation and projection of the MD
equations of motion onto the resulting eigenvectors is another approach to analyzing the
important motions in the simulation [17]. A hybrid method projects the atomic trajectories
in MD simulations onto previously calculated axes of normal modes [18], or onto axes ob-
tained by principal component analysis [19]. Recently, a method using either NM analysis
or a form of principal component analysis of a MD simulation was used to characterize the
hinge-bending motion between two dynamical domains in lysozyme [20].

We have used digital signal processing techniques to characterize the motion in MD
simulations. Fourier transforming all the atomic trajectories yields the overall frequency
distribution. We then choose the frequency ranges corresponding to motions of interest and
eliminate the rest. In this way, as was demonstrated for small molecules [21, 22] and for
a protein [23], it is possible to remove high frequency bond stretches and valence angle
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bending and focus on the low frequency conformational motion. Moreover, we are able
to extend this approach to extract the vectors defining the characteristic motion for each
frequency of interest in a MD simulation [22, 24]. These vectors are analogous to those
obtained from NM and provide a pictorial description of the motion as well as a means for
comparing the results of the two methods. The technique has been used for the study of
motion of small molecules, where distinct, well-resolved modes can be extracted from the
MD trajectory [22, 24].

We now apply this method to a protein molecule,Streptomyces Griseus Protease A
(SGPA), and compare the results to those obtained from NM analysis. We compare the
amplitudes of the motion about the mean positions for the two methods with each other and
with x-ray data and examine the correlation of the directions of atomic fluctuations from the
two simulations. We address the issues of how well the three descriptions of motion agree
and what the implications of the results are for the nature of the factors controlling motion
in protein molecules. For the two types of simulation, the motions have been characterized
in additional detail. This includes examining the nature of the motion as a function of the
frequency, revealing the dependence of overall correlated motion on structural properties
of the protein, and comparing specific modes of motion obtained by NM and MD.

SGPAis a small monomeric protein with a single polypeptide chain 181 amino acid
residues in length. It is a member of the chymotrypsin class of serine proteases [25] with a
fold made up of two similar anti-parallelβ-barrel domains. The structure has been solved
at a resolution of 1.5̊A, and carefully refined to anR factor of 12.5% [25]. MD analysis is
based on a 216 ps MD simulation of the motion of the protein in its crystal environment,
explicitly including the solvating water molecules and ions, and the neighboring protein
molecules [26].

METHODS

Minimization and Normal Mode Dynamics

The normal mode analysis was carried out on a single protein molecule,in vacuo. The
initial equilibrium conformation of the protein was obtained by minimizing the energy
of the x-ray structure, first with respect to the 7413 Cartesian coordinates (including all
hydrogen atoms), using 1567 steps of conjugate gradient minimization with smoothing and
an 8Å cutoff [27] and then with respect to the 574 dihedral angles using a variable metric
minimization routine. The minimizations were carried out with the program ENCAD (by
Michael Levitt). Details of the force field are given in Ref. [28]. The force field was modified
to use electrostatic interactions based on the partial charges of Hagler, Huler, and Lifson
[29], rather than a specific hydrogen bond energy term. The 8Å cutoff was used to maintain
compatibility with earlier NM work. The minimization in Cartesian coordinates was stopped
when the energy change was less than 10−7 kcal/mol per step. The rms shift in coordinates at
this point was less than 10−5 Å per step. The total rms change in coordinates from the x-ray
coordinates was 0.48̊A. The rms value of the final derivatives after minimization with respect
to dihedral angles was 4.0× 10−5 kcal/mol-rad (the largest derivative was 1.5× 10−4). The
second derivative matrix of the potential energy with respect to the dihedral angles was
calculated numerically from the analytically determined values of the first derivatives and
was then diagonalized to yield the normal modes,L k (eigenvectors) and frequencies,νk

(eigenvalues). (For details, see Refs. [11, 30].) The complete dynamic behavior of the
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system is described, in torsion space, by

θ j (t) = θ0
j +

Nθ∑
k

L jkαk cos(2πνkt + εk), (1)

whereθ j (t) is the j th torsion angle at timet , θ0
j is the equilibrium value of torsionj ,

whileαk andεk are the amplitude and phase of modek, respectively. The amplitudesαk are
proportional to the temperature,T ,

αk = (2kBT)1/2/2πνk, (2)

wherekB is Boltzmann’s constant. The corresponding dynamic behavior in Cartesian space
is given by

qi (t) =
∑

k

l ikαk cos(2πνkt + εk), (3)

where thei th component of thekth normalized Cartesian mode amplitude,l ik , is given by

l ik =
∑

j

(∂xi /∂θ j )L jk (4)

and qi is the mass-weighted Cartesian coordinatei,qi =m1/2
i (xi − x0

i ). In practice, the
Cartesian displacements for modek were calculated numerically from the change in
Cartesian coordinates obtained by perturbing the torsion angles,j , by L jk .

Molecular Dynamics

Newton’s equations of motion were solved numerically [14] using a Verlet algorithm [31].
This simulation was performed in Cartesian space. The MD trajectory used for the analysis
was a continuation of a simulation previously reported in [26]. Full details of the method can
be found there. The motion of the contents of two asymmetric units of theSGPAcrystal were
simulated, including two protein molecules with all hydrogen atoms, 1429 water molecules,
26 dihydrogen phosphate ions, and 16 sodium ions. Protein heavy atom starting positions
were taken from the 1.5̊A resolution x-ray structure [25]. The simulation was performed
with a forerunner of the program DISCOVER (Molecular Simulations Inc., San Diego, CA)
which uses a valence force field [32]. The dynamics was run with crystal symmetry boundary
conditions, coupling to a temperature bath [33] and a 1 fstime step. Interactions closer than
15Å between group centers were included, with a switching function smoothly decreasing
the potential from its full value to zero between 11 and 15Å. After initial Monte Carlo and
molecular dynamics relaxation of the solvent positions, a total of 216 ps of dynamics was
run. Coordinates and energies were saved energy 10 fs. This rate of sampling corresponds to
a maximum frequency of 1670 cm−1 [21, 34]. Only a few bond stretching vibrations occur
above this frequency. Since we are interested in the low frequency heavy atom motions,
this rate of sampling is adequate. The last 16,384 history points (approximately 164 ps) of
the simulation were used for the analysis. This corresponds to a frequency resolution of
0.2 cm−1. The analysis was carried out using the program FOCUS [24].
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Derivation of the frequency distribution from a MD trajectory.The frequency distribu-
tion function,g(νa), gives the density of motions at frequencyνa. This function is obtained
from the trajectories of the atomic coordinates [21]

g(νa) = (1/kBT)ν2
a

∑
i

H2
i (νa) (5)

Hi (νa) = 1/N
N∑

m=1

qi (tm) e− j 2πνatm/N, (6)

whereqi (tm) is the value of the mass weighted displacement coordinatei at time stepm
during the MD trajectory, andHi (νa) is the value of the Fourier transform ofqi at frequency
νa. The frequency distribution can be calculated for the whole system or for a subset of
atoms of interest.

Extracting modes. The normal modes were defined in Eq. (1) in terms of characteristic
frequencies and associated amplitudes of motion. An analogous description of the motion
as a function of frequency can be obtained from the MD trajectory using Fourier transform
techniques. The Fourier transform of a coordinate trajectory (Eq. (6)) gives the amplitude
of oscillation of this coordinate for each frequency. A sample mode,a, is defined by the set
of normalized amplitudes,l ia , of all coordinates,i , at a specific frequency,νa. The absolute
value ofl ia is given by

|l ia| = |Hi (νa)| (7)

and the relative direction is determined by

sign[l ia ] = sign[real[Hi (νa)]] for real[Hi (νa)] > imag[Hi (νa)] (8)

sign[l ia ] = sign[imag[Hi (νa)]] for real[Hi (νa)] < imag[Hi (νa)], (9)

whereHi (νa) is defined in Eq. (6). For further details see Ref. [35].
It should be noted that the sample modes do not necessarily represent independent mo-

tions. In principle, each independent mode should correspond to a peak in the frequency
distribution. Fluctuations in conformation during the molecular dynamics, and the discrete
and finite nature of the trajectories, cause line broadening in the frequency distribution. In
addition, for a large molecular such as a protein, there are a large number of closely spaced
frequencies. These factors result in an unresolved, but still useful, frequency distribution.

Criteria for the Similarity of Modes

The similarity between a normal modek and a MD sample modea may be measured by
the dot product,Ska, between their respective Cartesian displacement vectors,

Ska= lk · la, (10)

wherelk is thekth NM, andla is theath extracted sample mode [22]. Such dot products have
been widely used for comparison of normal modes [36] and modes obtained by principal
component analysis of MD simulations [37, 38]. The significance of the calculated dot
products was assessed by comparing them with a set of random modes [37]. The random
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modes were generated by choosing three random numbers between 0 and 1 to provide the
x, y, andz components of each atom. The dot product of random vectors is expected to be
of the order of 1/

√
N, whereN is the size of the vector.

The overall similarity of motion in selected regions of a molecule may be represented by
the fractionF of the MD sample modes that have dot products greater than some threshold
value with at least one normal mode. The threshold dot product value was taken to be 0.4.
Since we are interested primarily in the correlation of the large amplitude motions, it is
convenient to define a modified criterion,Famp, which is weighted by the mode amplitudes.
For this purpose, we use the total amplitude,

∑
ia′ l ia′ , of the subset of atomsi of interest

for a subset of MD sample modesa′ in the frequency range under consideration. Each of
the modes included in thea′ set satisfies the following criteria: (a) the amplitude,l ia′ , of at
least one of the atoms in the fragment is greater than 0.4 of the largest atomic amplitude
found in modea′; (b) there is a dot productSk′a′ > 0.4, with at least one of the normal modes
k′, where the amplitude,l ik ′ , of at least one of the atoms in the fragment is greater than
0.4 of the largest atomic amplitude found in modek′. The fraction of the total amplitude
accounted for by the amplitudes of sample modes similar to normal modes is thus

Famp=
∑
ia′

l ia′
/∑

ia

l ia, (11)

where
∑

ia l ia is the total amplitude of alla MD sample modes under consideration.

Removal of rigid body motion.In order to facilitate comparison of the NM and MD
motion, rigid body motion of the protein during the MD trajectory was removed. Each
transient structure along the analyzed trajectory was transformed to produce the best rigid
body fit to the structure of the first time step in the analysis.

Evaluation of the non-oscillatory component of the motion.In the molecular dynamics
simulation the atomic fluctuations are due to rigid body motion and conformational transi-
tions between conformational substates as well as oscillatory motions. Examination of the
characteristics of the Fourier transform of a few of the atoms which undergo significant con-
formational transitions reveals a large component at the first frequency sample (0.2 cm−1)
which decreases rapidly with frequency. This is due to (a) “edge effects,” i.e., the first and
last values in the atomic trajectory are significantly different; (b) “discontinuities,” i.e., rel-
atively sudden changes in value during the trajectories. Rigid body rotation and translation
mainly contribute to the first effect, while conformational transitions are usually (but not
always) of the second type. The approximate “non-oscillatory” mode,xno is defined by

xno = xfin − xinit, (12)

wherexinit andxfin are the coordinates at the beginning and end of the analyzed trajectory,
respectively.

Calculation of Root Mean Square Atomic Fluctuations

The observed and calculated atomic fluctuations were derived as follows:

1. Experimental rms fluctuations about the mean atomic position of atomi are derived
from the corresponding crystallographic isotropic temperature factor,Bi , by [39]〈

u2
i

〉1/2
exp =

(
3Bi /8π

2
)1/2

. (13)



LOW FREQUENCY MODES IN PROTEINS 175

2. The rms amplitude of motion of atomi about its mean position due to all normal modes
is [11]

〈
u2

i

〉1/2
nm =

(
1/2

∑
k

l 2
ikα

2
k

)1/2

. (14)

3. The rms amplitude of motion about the mean position of atomi from the molecular
dynamics trajectory is determined by

〈
u2

i

〉1/2
md =

[
N∑

m=1

1xi (tm)
2
/

N

]1/2

, (15)

where1x are the atomic fluctuation vectors,1xi (tm)= xi (tm)− x̄i andxi (tm) is the co-
ordinate vector of atomi at time stepm, x̄i is the mean position of atomi during the sample
period, andN is the number of samples.

Equal-Time Correlations

The correlation in the motions of atomsi and j in the MD simulation is given by [16]

C(i, j ) = 〈1xi (tm) ·1x j (tm)〉/
〈
1xi (tm)

2
〉1/2〈

1x j (tm)
2
〉1/2

. (16)

The corresponding correlation in the NM calculation is given by

C(i, j ) =
∑

k

l ′ik · l ′jk
/(∑

k

l ′2ik
∑

k

l ′2jk

)1/2

, (17)

wherel ′ik = l ik/νk.

RESULTS AND DISCUSSION

Root Mean Square Atomic Fluctuations

The characteristics of the atomic motion as obtained from experiment, NM dynamics,
and MD simulations are shown in Fig. 1a and Table I. The average rms atomic fluctuations
for the Cα atoms obtained from x-ray and from the original molecular dynamics are similar.
The average rms atomic fluctuations calculated by NM dynamics are significantly lower. It is
commonly observed that average atomic fluctuations from molecular mechanics simulations
such as NM dynamics [11, 40–43] and MD [23, 44, 45] differ in scale from the corresponding
experimental values. (In most cases the calculated values are lower.) This is partly due to
the fact that the three sources reflect different types of motion. Normal mode dynamics
represents only the harmonic component of intra-molecular motion, and does not include the
effects of neighboring protein molecules, solvent, or ions. Molecular dynamics simulations
include some conformational transitions between different local minima, and in periodic
boundary systems and translational and rotational rigid body motion. Since NM calculations
of large systems are, for simplicity, carried out in torsion space, while MD simulations
include all internal degrees of freedom, some additional flexibility is to be expected in
the MD simulations. Experimental values are based on an isotropic harmonic model of
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FIG. 1. Root mean square fluctuations in Cα as a function of residue number. Results from experiment and
NM and MD simulations are plotted in solid, dashed, and dotted lines, respectively. The atomic fluctuations in
the original MD simulation are shown in (a), while the fluctuations after removing rigid body motion and filtering
motions with frequency less then 1.6 cm−1 are shown in (b). Although the average amplitudes of the motions
differ, there is high overall correlations as a function of position in the protein (see Table I).

the individual atomic motions, but indirectly include some anharmonic motion effects, as
well as contribution from alternative conformations not sampled on the MD time scale and
imperfections in the crystal lattice.

Surprisingly, in spite of the large difference in amplitude of the NM data, the overall
behavior as a function of position along the chain is very similar. Inspection of the curves

TABLE I

Comparison of Cα RMS Fluctuations

Average RMS Correlation coefficients
amplitude

(Å) NM MD a MDb MDc

Exp. 0.67 0.82 0.60 0.64 0.79
NM 0.25 0.53 0.62 0.76
MDa 0.63 0.95 0.76
MDb 0.50 0.86
MDc 0.34

a Original MD.
b MD without rigid body motion.
c Filtered MD (>1.6 cm−1).



LOW FREQUENCY MODES IN PROTEINS 177

shows that the local maxima in the x-ray structure (at residues 11, 24, 64, 76, 118, 137, and
160) are all local maxima in the MD and NM curves as well. This similarity in pattern is
reflected in the correlation coefficients of the calculated fluctuations and the experimental
ones—0.82 and 0.60 for NM and MD, respectively (Table I). The expected similarity
between the simulated values and the experimental ones is limited by the experimental
accuracy: Liao and Herzberg [1] calculated the correlation coefficients between the Cα atom
crystallographic temperature factors for a series of protein structures solved independently
in two different laboratories. They found a wide range of variability in the correlation
coefficents, from a low of 0.07 to a high of 0.98. Higher values (0.5 or better), tend to be
found for higher resolution structures.

As shown in Table I, removing rigid body motion from the MD trajectory reduces the
overall Cα rms fluctuations from 0.63 to 0.50̊A, without qualitatively changing the distribu-
tion as a function of residue number. The correlation with the NM motion increases to 0.62
and there is also a small increase in correlation with the experimental motion. Increased
correlation with the NM motion is to be expected, since rigid body motion is not repre-
sented there. However, increased agreement with the experimental values is not expected,
and suggests that the MD rigid body motion is unreliable (cf. below).

An examination of the trajectories of residues with fluctuations significantly higher
than the corresponding experimental values showed that these are typically involved in
non-oscillatory conformational transitions, as reflected in the large amplitude of the “non-
oscillatory mode” (Eq. (12)). The low frequency sample modes (up to∼1.6 cm−1) were
found to be highly correlated with the approximate “non-oscillatory mode.” That is, sample
modes up to this frequency have large amplitudes for atoms that undergo conformational
transitions and relatively negligible amplitudes for all other atoms. The effect of such tran-
sitions was reduced by filtering the trajectory to eliminate motion with frequency less than
∼1.6 cm−1, leaving mainly intramolecular oscillatory motion. The resulting average rms
fluctuations in the filtered trajectory is reduced to 0.34Å. Although this value is much lower
than the experimental one, the correlation with experiment increases to 0.76, and a new peak
in the MD fluctuation around residue 146 appears, in agreement with experiment and the
NM results. In addition, the correlation coefficient with the NM calculations increased to
0.79. This similarity in intramolecular oscillatory motions obtained by the two methods is
also evident in Fig. 1b.

Correlated Motion of Residues

A general indication of the degree of collective motion in the protein can be obtained
from the equal-time cross-correlations of atomic fluctuations. We have calculated the cross-
correlations of the fluctuations of all Cα ’s, for the lowest 32 normal modes and for the MD
simulation. To gain further insight into the relation between the cross-correlations and the
inter-residue distance, we compared the patterns in the distance map and cross-correlation
maps. The distance map (Fig. 2a) shows a pattern characteristic of aβ sheet structure with
lines perpendicular to the diagonal corresponding to close residues along adjacent strands.
A short helix at the C-terminus of the protein gives rise to the band parallel to the diagonal at
the top right hand corner. The cross-correlations as a function of pairs of residues are shown
in Figs. 2b–d. For the normal modes (Fig. 2b), the positive correlations closely mimic the
regions of close inter-residue distance in Fig. 2a. There are also some long range positive and
negative correlations. In the MD simulation, a similar short range positive correlation pattern
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FIG. 2. (a) Inter-residue Cα · · ·Cα distance map forSGPA. Distances less than 9̊A are shown in red, and
those between 9 and 27̊A are yellow. Red regions extending perpendicular to the diagonal show the close con-
tacts between neighboring anti-parallelβ strands. Inter-residue equal-time cross-correlation maps, obtained from
(b) NM analysis, (c) MD trajectory, after removal of rigid body motion, conformational transitions, and high
frequency motion (>50 cm−1). (d) Modes extracted from the MD trajectory, no rigid body motion, frequencies
3.3<ν <50 cm−1. Correlations greater than 0.3 are shown in red, correlations between 0.2 and 0.3 in yellow,
correlations between−0.2 and−0.3 in light blue, and those less than−0.3 in dark blue. Both types of motion
show extensive positive correlations, but negative correlations are more pronounced in the normal modes.

is obtained, after eliminating rigid body motion and conformational transitions (Fig. 2c).
The negative correlations are much less prominent, and only two of the longer range ones
are evident. It is not possible to judge from the available data whether the strong long range
negative correlations in the NM results are real, and conformational drift in the MD prevents
them from being apparent there, or whether they are artifacts of the NM analysis. It should
be noted, however, that these kinds of long range correlations have been observed in NM
analysis of other proteins [11].
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Frequency Distribution

Since the amplitude of a mode is inversely proportional to the frequency [11, 46], the most
significant motion is produced by the low frequency modes. These are the modes which result
in the largest amplitude motion, with the least energy change. The conformational motion
which is of importance for biological events is expected to involve small energetic changes.
Thus, we have concentrated on the low frequency motion of the protein as determined from
normal mode dynamics and extraction of characteristic modes from molecular dynamics.
The frequencies of the normal modes up to 50 cm−1 (127 modes) are plotted in Fig. 3a.
The frequency distribution,g(ν), in both the original MD trajectory and after removing the
rigid body motion is shown in Fig. 3b (0–50 cm−1). The frequency distributions with and
without rigid body motion are very similar except for a reduction in the value ofg(ν) for
very low frequencies.

Unlike the discrete frequencies in the normal mode dynamics, the frequency distribution
in the MD simulation is continuous. This is a consequence of the fact that conformational
variations during the simulation broaden the frequencies of the individual modes, causing
them to overlap. In order to better compare the discrete NM spectrum with the continuous
MD distributions, the NM distribution has been expressed as a mode density by convoluting
it with a Gaussian function generating a full width half maximum resolution of 1.5 cm−1

[6]. The density of modes in the MD simulation increases steadily up to∼40 cm−1. A
corresponding increase is observed for the normal mode dynamics.

We have extracted sample modes from the molecular dynamics simulation at intervals of
0.2 cm−1, the highest resolution possible for the available simulation length, up to 15 cm−1,

FIG. 3. Frequency distribution as obtained from (a) NM dynamics, (b) original MD trajectory (dotted line),
and after removal of rigid body trajectory (solid line). The discrete frequencies of the normal modes are broadened
with a resolution of 1.5 cm−1 to better compare them with the continuous MD distribution.
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FIG. 4. Atomic amplitudes of motion as a function of residue number and frequency for (a) NM analysis,
(b) sample modes from the MD trajectory after removal of rigid body motion and frequencies below 1.6 cm−1. The
shading indicates the relative amplitude of the motion of each residue in each mode. Residues with amplitudes
between 70 and 100% of the largest value are black, amplitudes between 30 and 70% are in dark gray, amplitudes
between 20 and 30% are in light gray (smaller amplitudes are not shown). MD modes are obtained by sampling
from the continuous distribution. As expected, the largest amplitude motions are observed at the lowest frequencies.
For the normal modes, motion is concentrated in a few local regions of the protein.

yielding a total of 75 modes. Thus, all motions with periods between∼164 and 2.2 ps are
considered. At the low frequency end of the spectrum, the lowest normal mode is 6 cm−1,
while the MD trajectory represents motions down to 0.2 cm−1. The trajectory is, therefore,
longer than needed to cover all relevant motions. Rigid geometry calculations in general
are known to over-estimate the stiffness of the energy surface [11, 47], so that normal mode
calculations in dihedral space yield characteristic frequencies which are higher than those
obtained in Cartesian space [48]. Therefore, in comparing the extracted MD modes to the
normal modes we include a higher range of frequencies, the 32 modes up to 25 cm−1, for
the latter.
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TABLE II

Regions in the Protein Selected for Analysis

Residues

Fragment PDBa Sequential Description

a 29–44 5–16 Hairpin, very mobile
b 46–53 18–29 Hairpin, putative independent folding unit
c 89–105 47–58 Hairpin, low mobility
d 117–124 70–81 Insertion in domain linker, very mobile
e 166–179 111–124 Hairpin, very mobile
f 198–213 140–151 Hairpin, low mobility
g 214–228 152–166 Hairpin, specificity fragment, most mobile
h 231–241 169–180 C-terminal turn and helix

a Residue numbers as given in PDB entry 2SGA.

The very low frequency conformational transition mode (obtained from Eq. (12)) was
found to correlate with the sample modes below 1.6 cm−1 with a correlation coefficient
of 0.6–0.7, whereas the correlation with sample modes above 1.6 cm−1 is less than 0.4.
It is, therefore, possible to approximately separate the oscillatory motion from the po-
sitional or conformational rearrangements: Sample modes below∼1.6 cm−1 may be re-
garded as mainly due to non-oscillatory motion and those above as mainly due to oscillatory
motion.

Analysis of Specific Structural Units

We have compared the low frequency modes from the two methods for the whole protein
and for eight shorter structural elements (see Table II). These include the sixβ hairpin loops
(three in each of theβ barrel domains). Three of theβ hairpins are the most mobile regions
of structure seen in the crystal: residues 5–16, 111–124, and 152–166. The latter hairpin
forms part of the primary specificity pocket of the enzyme. Its large amplitude motion is
attributable to its surface location, and the presence of four glycine residues. However, the
tip of the hairpin forms a disulfide bond with a remote piece of chain. Apparently, during the
motion this link is able to lengthen in a manner that does not greatly restrict the amplitude.

By contrast, the two hairpins formed by residues 47–58 and 140–151 are two of the least
mobile regions of the structure (cf. Fig. 1). (Residue 54 displays only small fluctuations
in the experiment and NM dynamics, but larger fluctuations in the MD simulation. This
is attributed to a conformational transition in the MD since the motion is small in the fil-
tered trajectory.) The two other regions analyzed correspond to putative semi-independently
folding fragments [49]. These are a hairpin-like insertion on the inter-domain linker region,
relative to other chymotrypsin class proteins [25] (residues 70–81), and the C-terminal helix
together with the turn preceding it (residues 169–180) [49]. Three of these regions (b, d, and
the end of h) are involved in intermolecular interactions in the crystal which might affect
the motion observed experimentally and by MD.

Analysis of Modes

Atomic amplitudes of motion.Figure 4a shows the relative amplitudes of the Cα atoms
as a function of residue number for the 32 lowest normal modes. Examination of the
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amplitudes of motion in the various normal modes reveals that the largest contribution to
the overall motion comes from the low frequency modes, as expected. Similar behavior has
been generally observed in previous NM calculations [11, 18, 40, 46]. As noted earlier, the
low frequency modes are by nature low energy modes; i.e., it is less costly energetically
to deform the molecule along the low frequency modes than to achieve fluctuations of the
same magnitude by deforming it along high frequency modes. Since the overall energy is
partitioned equally among the modes, distortions due to low frequency modes will account
for most of the overall fluctuations. The largest amplitudes are obtained for fragmentsg
ande in modes 1–5. Significant motion is also obtained for fragmentsa, b, d, h in some of
the modes. The largest amplitudes within these fragments are obtained for the central part
of the peptide, i.e., the turn regions. Examination of the distribution of amplitudes within
each mode also reveals that the very lowest modes (i.e., 1–3, 5) are virtually localized on
one fragment, whereas the motion of most of the higher modes is spread over larger parts
of the protein.

The amplitudes of oscillatory motion in the MD simulation are given in Fig. 4b. At the
low frequency end, the motion is very pronounced in the fragment regions, particularly
fragmentsa, e, andg. At higher frequencies the motion is more equally distributed along
the protein, in qualitative agreement with the results from the normal mode dynamics.

Correlated motion in the extracted MD modes.We have used the sample modes ex-
tracted from the MD trajectory to recalculate the cross-correlations discussed above, so as
to examine whether the extraction process retained the characteristic features of the motion.
Figure 2d shows the inter-residue cross-correlations obtained using all sample modes with
frequencies between 3.3 and 50 cm−1. The pattern created by the positive correlations is
very similar to the pattern obtained from the original MD (Fig. 2c) and to that representing
close inter-residue distances (Fig. 2a). However, the high correlations in Fig. 2c appear in
regions corresponding to somewhat larger inter-residue distances than the high correlations
in Fig. 2d. In addition, the negative correlations are smaller than those obtained from the
original trajectory. Correlation maps which include sample modes with frequency lower
than∼3 cm−1 do not reveal these characteristic patterns as clearly, due to the effects of
non-oscillatory motions.

Correlation between NM and MD modes.We compared the NM and MD motion in
protein regions of high amplitude (fragmentsa, b, d, e, g, h) as well as for two frag-
ments with relatively low amplitudes and for the whole protein. The similarity between
the modes, as determined by the dot product between the corresponding modes, is shown
in Fig. 5a for fragmentg. In addition Fig. 5b shows the correlation between the NM
and the MD modes for the whole protein. For comparison, we also calculated the cor-
relation between the MD modes for fragmentg with a set of 32 random modes. Over-
all measures for the similarity of motion of the various regions as described in Methods
are given in Table III. The fraction of sample modes with a high correlation to at least
one normal mode is given byF , while Famp is weighted by the amplitudes of the modes
(Eq. (11)).

For all fragments there is a significant correlation between the extracted MD modes and
some of the normal modes. This is demonstrated both in terms of the number of “hits,”F ,
and in terms of the overall amplitude,Famp, accounted for by sample modes with similarity
to normal modes. The correlations are particularly striking when compared to the extremely
low values between the MD modes and modes generated randomly. Thus, for these short
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FIG. 5. Correlation between normal modes (vertical axis) and modes extracted from the MD trajectory, after
removing rigid body motion (horizontal axis). The corresponding MD frequency distributions are shown above
each plot. Correlated motions between individual NM and MD modes are shown as short bars, shaded as follows:
Correlations between 0.7 and 1.0 are in black, between 0.3 and 0.7 in dark gray, and between 0.2 and 0.3 in light
gray (smaller correlations are not shown). The correlations for fragmentg are shown in (a) and for the whole
protein in (b). For the fragment, there is a strong correlation between a few NM and MD modes. These correlations
are not apparent at the whole protein level.

regions of the protein, there are typical modes of motion which are manifested in the normal
modes and in the molecular dynamics simulation.

Figure 6a shows a comparison of the extracted MD modes with three of the normal
modes of fragmentg. Each diagram displays the atomic displacements corresponding to

TABLE III

Correlation between NM and MD Modes

Fragment Fa Famp
b

a 0.71 0.70
b 0.84 0.75
c 0.85 0.61
d 0.85 0.82
e 0.68 0.66
f 0.84 0.65
g 0.68 0.62
h 0.87 0.79
gc <0.1

a Fraction of MD sample modes with dot products
greater than 0.4 with one or more normal modes.

b Weighted by mode amplitude (see Eq. (11)).
c Comparison with random modes.
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one normal mode. Similar results were obtained for the other fragments. As seen in Fig. 5b,
the correlation between the MD modes and the normal modes is much smaller when the Cα

atoms of the whole protein are compared. For the whole protein, there were no correlations
higher than 0.4. In Fig. 6b we show normal mode 4 along with the extracted MD mode with
the highest correlation to it (0.4). It is clear that although in some regions the two modes are
very similar (e.g., fragmentsb, c, andg have correlations of 0.5, 0.6, and 0.6, respectively),
other regions differ in absolute amplitude or direction. For another pair of normal modes
and MD modes with an overall correlation of 0.4, fragmentsb, c, and f have correlations
of 0.5, 0.7, and 0.6, respectively. These results tend to indicate that although there are typ-
ical regional motions, which are similar in MD and NM, these do not combine in a fixed
manner in terms of relative magnitude and phase. The results are in accord with the conclu-
sions obtained by examining the equal-time correlated motion of residues, discussed above.
That is, both NM and MD calculations display large positive correlations for residues
in spatial proximity. However, while the NM dynamics result in large negative correla-
tions for some distant residues, hardly any significant long range correlations are observed
in MD.

CONCLUSIONS

Normal Mode, Molecular Dynamics, and Experimental Motions Are Similar

Molecular dynamics and normal mode analysis provide an approximate description of
the motion of protein molecules. It is difficult to evaluate the validity of features of the
motion obtained using either method alone. The use of a mode analysis of a molecular
dynamics trajectory has made it possible to compare the two methods more directly than
was previously possible. The surprising result is that although there are some detailed
differences in behavior, the two methods produce a qualitatively similar overall picture of
the motion of a protein molecule, and both are in agreement with the available experimental
data. A range of diverse properties leads to this conclusion:

Amplitude of atomic fluctuations.There is a high correlation between the amplitude of
the atomic fluctuations obtained by MD and NM analyses, and between both of these with
the amplitudes deduced from the crystallographic temperature factors.

Correlated motions of residues.Equal-time correlations from normal modes, directly
from MD, and reconstructed from extracted MD modes, all show positive correlations
for motion of residues within theβ hairpins in the structure. The results for longer range
correlation do differ, however.

Frequency distributions. Although the frequency distribution is discrete in one case
(NM) and continuous in the other, the density of modes as a function of frequency is
similar.

Correlation between normal modes and sample modes from the MD.For short frag-
ments of the chain, there is a high correlation between the motion represented by individual
MD modes and particular NM ones. This is not true for the whole protein.
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Why are the Motions So Similar?

Both methods are affected by a number of approximations. In MD, imperfections in
the potential lead to a slow drift away from the x-ray structure. In the NM calculations,
the force field and cutoff used are different from those used in the MD calculations, and
a torsion space representation is used, rather than the MD Cartesian one. Brookset al.
[36] and de Grootet al. [38] have presented criteria for the analysis of the similarity
of low frequency normal modes. The latter authors used a penalty function emphasizing
differences to compare sets of eigenvalues and found substantial overlap of the essential
subspace derived from simulations, using different parameters, such as with and without
solvent or using different cutoff values. Both Kitao and G¯o [48] and Janeˇzič and Brooks
[50] have shown that the torsion space representation produces normal modes similar to
those obtained in Cartesian space, although the frequencies are shifted to higher values. In
addition to these factors, the assumptions of harmonic motion, extrapolation of motion out
from a minimum energy conformation, and neglect of the solvent and crystal environment
might be expected to have a dramatic effect on the significance of the results. Yet, in
spite of these factors, qualitatively similar behavior is found. This is in agreement with the
findings of other studies comparing NM analysis and MD simulations on three different
proteins [51, 52, 20]. Thus, we conclude that the general agreement of the results from
the two methods, and with experiment, indicates that there is a basic robustness about
the protein motion which is easily captured. It would appear that particular directions are
relatively free of van der Waals clashes, and not restrained by strong interactions, while
others offer strong resistance to motion. For example, the most mobile hairpin, fragmentg,
undergoes a flapping motion, away from the protein surface and back again. Such a motion
is restrained only by the presence of solvent and the strength of the van der Waals interaction
with the rest of the protein. By contrast, the least mobile hairpin, fragmentc, is restrained
from such a motion by helices lying approximately above and below the plane of the
hairpin.

Are These Motions Co-incidental Properties of the Structure,
or Do Some of Them Have a Functional Role?

A surprising feature of the modes is that none of the low frequency ones involve a
relative motion of the two well defined domains. In other cases, for example, hen egg
white lysozyme, such motions are very clear [11]. These inter-domain movements may
facilitate the entrance and exit of substrates in enzymes. In the case ofSGPA, the motion
of the largest amplitude mode is concentrated in the “specificity loop” [25]. Thisβ hairpin
forms part of the lining of the pocket into which the side chain of the residue on the
N-terminal side of the scissile bond of a substrate fits. Variations in the lining of this pocket
are primarily responsible for the differences in specificity among the different members of
the chymotrypsin class serine proteases. Figure 7 shows the main chain ofSGPAin this
region, with the specificity loop colored red. A peptide inhibitor is also shown, with co-
ordinates taken from the PDB file 3SGA. The C-terminal phenlyalanine side chain occupies
the pocket. In the apo enzyme, this pocket is presumably occupied by solvent, which must
be displaced upon substrate binding. The large amplitude motion of the mode appears to
facilitate squeezing out the solvent as the substrate side chain enters.
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FIG. 7. The relationship between the most mobile loop (residues 152–166) and the primary specificity pocket
of SGPA. The main chain ofSGPAin this region is shown, with the specificity loop colored red. A peptide inhibitor
is also shown, with co-ordinates taken from the PDB file 3SGA. The phenylalanine side chain occupies the primary
specificity pocket.

FIG. 6. Normal mode vectors (green) at each Cα and corresponding sample modes extracted from the MD
trajectory with no rigid body motion (red). (a) Normal modes 3, 5, and 8 for fragmentg and all sample MD modes
having correlations larger than 0.5 with these. (b) Normal mode 4 and the sample MD mode having the highest
correlation with it, for the whole protein. As expected from the comparisons of NM and MD modes shown in
Fig. 5, there is a high correlation at the fragment level, but not for the whole protein.
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